首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   3026篇
  免费   366篇
  国内免费   333篇
测绘学   429篇
大气科学   251篇
地球物理   587篇
地质学   780篇
海洋学   251篇
天文学   14篇
综合类   182篇
自然地理   1231篇
  2024年   3篇
  2023年   33篇
  2022年   113篇
  2021年   156篇
  2020年   167篇
  2019年   140篇
  2018年   137篇
  2017年   120篇
  2016年   134篇
  2015年   169篇
  2014年   178篇
  2013年   222篇
  2012年   153篇
  2011年   178篇
  2010年   151篇
  2009年   172篇
  2008年   156篇
  2007年   181篇
  2006年   172篇
  2005年   154篇
  2004年   149篇
  2003年   128篇
  2002年   112篇
  2001年   87篇
  2000年   67篇
  1999年   49篇
  1998年   49篇
  1997年   34篇
  1996年   25篇
  1995年   20篇
  1994年   26篇
  1993年   18篇
  1992年   15篇
  1991年   8篇
  1990年   10篇
  1989年   5篇
  1988年   9篇
  1987年   7篇
  1986年   7篇
  1985年   4篇
  1984年   1篇
  1983年   3篇
  1981年   2篇
  1980年   1篇
排序方式: 共有3725条查询结果,搜索用时 31 毫秒
101.
2001-2015年中国植被覆盖人为影响的时空格局   总被引:3,自引:0,他引:3  
基于MODIS-NDVI和气温、降水数据,使用基于变异系数的人为影响模型定量计算了2001-2015年中国植被覆盖人为影响,辅以趋势分析、Hurst指数等方法探讨了中国植被覆盖人为影响的时空变化特征及未来演变趋势。研究发现:① 2001-2015年,中国植被覆盖人为影响由南向北空间分异愈发明显,年均值为-0.0102,植被覆盖在人类活动影响下轻微减少,负影响面积占51.59%,略大于正影响面积。② 中国植被覆盖人为影响年际变化特征明显,整体呈负影响波动减少趋势,降速为0.5%/10a,其中正影响、负影响均呈增大趋势,正影响增速(0.3%/10a)远大于负影响(0.02%/10a)。③ 2001-2015年间,中国植被覆盖人为正影响重心向东北方向移动,负影响重心向西南方向移动,东北部植被覆盖在人为影响下不断改善,西南部人类活动对植被破坏程度不断增大。④ 中国植被覆盖人为影响主要呈负影响减少和正影响增大趋势,面积占比分别为28.14%和25.21%,生态环境趋于改善。⑤ Hurst指数分析表明,中国植被覆盖人为影响未来演变趋势的反向特征强于正向特征,主要呈人为负影响先减少后增大趋势,面积占比15.59%。  相似文献   
102.
Biodiversity loss, climate change, and increased freshwater consumption are some of the main environmental problems on Earth. Mountain ecosystems can reduce these threats by providing several positive influences, such as the maintenance of biodiversity, water regulation, and carbon storage, amongst others. The knowledge of the history of these environments and their response to climate change is very important for management, conservation, and environmental monitoring programs. The genesis of the soil organic matter of the current upper montane vegetation remains unclear and seems to be quite variable depending on location. Some upper montane sites in the very extensive coastal Sea Mountain Range present considerable organic matter from the late Pleistocene and other from only the Holocene. Our study was carried out on three soil profiles (two cores in grassland and one in forest) on the Caratuva Peak of the Serra do Ibitiraquire (a sub-range of Sea Mountain Range – Serra do Mar) in Southern Brazil. The δ13C isotopic analyses of organic matter in soil horizons were conducted to detect whether C3 or C4 plants dominated the past communities. Complementarily, we performed a pollen analysis and 14C dating of the humin fraction to obtain the age of the studied horizons. Except for a short and probably drier period (between 6000 and 4500 cal yr BP), C3 plants, including ombrophilous grasses and trees, have dominated the highlands of the Caratuva Peak (Pico Caratuva), as well as the other uppermost summits of the Serra do Ibitiraquire, since around 9000 cal yr BP. The Caratuva region represents a landscape of high altitude grasslands (campos de altitude altomontanos or campos altomontanos) and upper montane rain/cloud forests with soils that most likely contain some organic matter from the late Pleistocene, as has been reported in Southern and Southeastern Brazil for other sites. However, our results indicate that the studied deposits (near the summit) are from the early to late Holocene, when somewhat wetter and warmer conditions (since around 9000 cal yr BP) enabled a stronger colonization of the ridge of Pico Caratuva by mainly C3 plants, especially grassland species. However, at the same time, even near the summit, the soil core from the forest site already presented the current physiognomy (or a shrubby/elfin or successional forest), indicating that the colonization of the neighboring uppermost saddles and valleys were probably populated mainly by upper montane forest species.  相似文献   
103.
Previous studies on lipid biomarkers preserved in Chinese stalagmites have indicated that ratios of low‐molecular‐weight (LMW) to high‐molecular‐weight (HMW) n‐alkanes, n‐alkan‐2‐ones, n‐alkanols and n‐alkanoic acids can be used as an index of vegetation versus microbial organic matter input to the system and, by extension, a marker of climatic changes, with increases in the proportion of LMW compounds coinciding with colder periods. Here we test whether this hypothesis is equally applicable to a different geographical region (north‐west Scotland), by examining a stalagmite record of the past 200 years, and a wider range of lipid markers. We also test the applicability of other lipid proxies in this context, including the use of n‐alkane ratios, to interpret vegetation changes, and unsaturated alkanoic acid ratios as climatic indicators. The results show that lipid proxies preserved in stalagmites, and especially those related to vegetation, are potentially extremely useful in palaeoenvironmental research. Of particular value is the use of C27/C31 n‐alkane ratios as a proxy for vegetation change, clearly indicating variations between herbaceous and arboreal cover. This proxy has now been successfully applied to samples from diverse environments, and can be considered sufficiently robust to be of use in analysing future stalagmite records. It will be of particular value in areas where reliable pollen records are not available, as is often the case with deeper cave deposits. However, the division between LMW and HMW aliphatic compounds is not a clear‐cut case of microbial versus plant activity, with the changes in LMW compounds relating more closely to those in their HMW analogues than in specific bacterial biomarkers. The use of unsaturated alkanoic acid ratios here gives conflicting results, with the observed variation through time depending on the isomer measured. The discrepancies between the findings of this study and previous work are likely to be due to the varying controls on the lipids (original organic matter input, and compound degradation), which in turn will be affected by whether the main climatic limiting factor on the soil is temperature or precipitation. This suggests that lipid proxies preserved in stalagmites must be interpreted with care, particularly in the case of bacterial compounds which may be derived from within the cave or from the soil. However, many of these issues can be resolved by the use of multi‐proxy studies. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   
104.
A pollen‐inferred vegetation shift, from pioneer birch–pine woodland to mixed pine–summergreen oak forests, in the southern Alpine forelands, is commonly attributed to a centennial‐scale warming that occurred between the Gerzensee Oscillation (GO) and the Younger Dryas. Two microtephra layers bracketing the Younger Dryas onset (the Laacher See Tephra and the Vedde Ash) improve the chronology at Lago Piccolo di Avigliana (northern Italy) and allowed accurate correlation with Central European records where the GO is clearly detected. We used pollen percentages, pollen accumulation rates (PARs) and plant macrofossils to assess the population dynamics of Quercus, and leaf‐cuticle analysis for a better taxonomic identification of Quercus. Our results indicate that the species that was locally present was probably Quercus robur. PARs suggest that the population expansion started as early as the Bølling and followed an exponential increase through time. We attribute this gradual shift to increasing summer temperatures and longer growing seasons which contrast with a gradually decreasing temperature trend as recorded in Greenland ice cores and in Central Europe. Breaks or set‐backs in the PAR record may indicate the biotic response to minor Lateglacial cooling events of different life‐history stages in the Quercus population. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   
105.
The vegetational history of the penultimate glacial period, Marine Isotope Stage (MIS) 6 (c. 185–135 ka), has remained relatively unexplored. Here we present a new record from the Ioannina basin, north‐west Greece, which constitutes the highest‐resolution terrestrial pollen record for this interval produced to date. It shows that the vegetation history of MIS 6 in this region can be divided into two parts: an early period (185–155 ka) with pronounced oscillations in tree population extent, and a later period (155–135 ka) with much smaller tree populations and subdued oscillations. This pattern is analogous to the MIS 3/MIS 2 division during the last glacial in the same sequence, although the early part of MIS 6 had larger Pinus populations and fewer temperate trees relative to the equivalent interval in MIS 3. This implies cooler and wetter conditions, which is somewhat counterintuitive given the high summer insolation during MIS 6e, but is in line with other palaeoclimatic evidence from the Mediterranean. Comparison with North Atlantic records suggests that despite the absence of pronounced iceberg discharges during MIS 6, North Atlantic millennial‐scale variability had a significant downstream impact on tree populations in north‐west Greece. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   
106.
Palynological and geochemical analyses provide valuable information about modern and past climatic regimes and vegetation. The impact of climate and humans on past vegetation in the semi-arid areas of northwestern Iran has received increased interest in the wake of warming temperatures in the Middle East. Palynological and down-core XRF elemental abundances from a peat core from Lake Neor enabled a reconstruction of vegetational changes of the past 7000 years over the highlands of northwestern Iran. Periods of increased arboreal pollen (AP) types and high (Artemisia + Poaceae)/Chenopodiaceae ratios along with low titanium abundances, high percentages of total organic carbon, more negative δD values, and higher carbon accumulation rates suggest a relatively wet climate. These conditions have persisted during the periods 6700–6200, 5200–4450 and 3200–2200 cal a bp. The overall low AP values, substantial rise of Chenopodiaceae, high Ti abundances and low values of palaeo-redox proxies, are all evidences of a drier climate, as has been reconstructed for the periods 6200–5200 and 4030–3150 cal a bp and the last 2200 years. An important feature of the last centuries is the increase of anthropogenic and pastoral indicator pollen types. Our results may provide basic data to predict future trends in vegetation dynamics under future climate change in western Asia.  相似文献   
107.
Soil moisture is essential for vegetation restoration in arid and semi-arid regions. Ascertaining the vertical distribution and transportation of soil moisture under different vegetation types has a profound effect on the ecological construction. In this study, the soil moisture at a depth of 500 cm for four typical vegetation types, including Robinia pseudoacacia, Caragana korshinskii, Stipa bungeana, and corn, were investigated and compared in the Zhifanggou watershed of the Loess plateau. Additionally, hydrogen and oxygen stable isotopes were detected to identify the transport mechanism of soil moisture. The results showed vertical distribution and transportation of soil moisture were different under different vegetation types. Depth-averaged soil moisture under S. bungeana and corn generally increased along the profile, while C. korshinskii and R. pseudoacacia showed weakly increasing and relatively stable after an obvious decreasing trend (0–40 cm). The soil moisture under R. pseudoacacia was lower than that under other vegetation types, especially in deep layer. However, the effect of R. pseudoacacia on soil moisture in the topsoil (< 30 cm) could be positive. For R. pseudoacacia (160–500 cm), C. korshinskii (0–500 cm), and S. bungeana (0–100 cm), the soil moisture declined with increased in vegetation age. Planting arbor species such as R. pseudoacacia intensified the decline of soil moisture on the Loess Plateau. The capacity of evaporation fractionation of soil moisture followed the sequence: corn > S. bungeana > R. pseudoacacia > C. korshinskii. The δ18O values in soil water fluctuated across the profile. The δ18O values changed sharply in upper layer and generally remained stable in deep layer. However, in middle layer, the vertical distribution characteristics of the δ18O values were different under different vegetation types. We estimated that piston flow was the main mode of precipitation infiltration, and the occurrence of preferential flow was related to vegetation types. These results were helpful to improve the understanding of the response of deep soil moisture to vegetation restoration and inform practices for sustainable water management.  相似文献   
108.
Stemflow (Sf) measurements in tropical rain and montane forests dominated by large trees rarely include the understory and small trees. In this study, contributions of lower (1‐ to 2‐m height) and upper (>2‐m height and <5‐cm diameter at breast height [DBH]) woody understory, small trees (5 < DBH < 10 cm), and canopy trees (>10‐cm DBH) to Sf per unit ground area (Sfa) of a Mexican lower montane cloud forest were quantified for 32 days with rainfall (P) during the 2014 wet season. Rainfall, stemflow yield (Sfy), vegetation height, density, and basal area were measured. Subsequently, stemflow funneling ratios (SFRs) were calculated, and three common methods to scale up Sfy from individual trees to the stand level (tree‐Sfy correlation, P‐Sfy correlation, and mean‐Sfy extrapolation) were used to calculate Sfa. Understory woody plants, small trees, and upper canopy trees represented 96%, 2%, and 2%, respectively, of the total density. Upper canopy trees had the lowest SFRs (1.6 ± 0.5 Standard Error (SE) on average), although the lower understory had the highest (36.1 ± 6.4). Small trees and upper understory presented similar SFRs (22.9 ± 5.4 and 20.2 ± 3.9, respectively). Different Sf scaling methods generally yielded similar results. Overall Sfa during the study period was 22.7 mm (4.5% of rainfall), to which the understory contributed 70.1% (15.9 mm), small trees 10.6% (2.4 mm), and upper canopy trees 19.3% (4.4 mm). Our results strongly suggest that for humid tropical forests with dense understory of woody plants and small trees, Sf of these groups should be measured to avoid an underestimation of overall Sf at the stand level.  相似文献   
109.
The hydrology and water balance of megadunes and lakes have been investigated in the Badain Jaran Desert of China. Field observations and analyses of sand layer water content, field capacity, secondary salt content, and grain size reveal 3 types of important natural phenomenon: (a) vegetation bands on the leeward slope of the megadunes reflect the hydrological regime within the sandy vadose zone; (b) seepage, wet sand deposits, and secondary salt deposits indicate the pattern of water movement within the sandy vadose zone; (c) zones of groundwater seeps and descending springs around the lakes reflect the influence of the local topography on the hydrological regime of the megadunes. The seepage exposed on the sloping surface of the megadunes and gravity water contained within the sand layer confirm the occurrence of preferential flow within the vadose zone of the megadunes. Alternating layers of coarse and fine sand create the conditions for the formation of preferential flows. The preferential flows promote movement of water within the sand layer water that leads to deep penetration of water within the megadunes and ultimately to the recharging of groundwater and lake water. Our results indicate that a positive water balance promotes recharge of the megadunes, which depends on the high permeability of the megadune material, the shallow depth of the surface sand layer affected by evaporation, the occurrence of rainfall events exceeding 15 mm, and the sparse vegetation cover. Water balance estimates indicate that the annual water storage of the megadunes is about 7.5 mm, accounting for only 8% of annual precipitation; however, the shallow groundwater per unit area under the megadunes receives only 3.6% of annual precipitation, but it is still able to maintain a dynamic balance of the lake water. From a water budget perspective, the annual water storage in the megadunes is sufficient to serve as a recharge source for lake water, thereby enabling the long‐term persistence of the lakes. Overall, our findings demonstrate that precipitation is a significant component of the hydrological cycle in arid deserts.  相似文献   
110.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号